首页> 外文OA文献 >Enzyme Architecture : Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase
【2h】

Enzyme Architecture : Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase

机译:酶的体系结构:建模的磷酸甘油糖异构酶催化疏水钳的操作。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Triosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational change, which helps position the side chains of two key hydrophobic residues (1170 and L230), over the carboxylate side chain of E165. This is critical both for creating a hydrophobic pocket for the catalytic base and for maintaining correct active site architecture. Truncation of these residues to alanine causes significant falloffs in TIM's catalytic activity, but experiments have failed to provide a full description of the action of this clamp in promoting substrate deprotonation. We perform here detailed empirical valence bond calculations of the TIM-catalyzed deprotonation of DHAP and GAP by both wild type TIM and its 1170A, L230A, and 1170A/L230A mutants, obtaining exceptional quantitative agreement with experiment. Our calculations provide a linear free energy relationship, with slope 0.8, between the activation barriers and Gibbs free energies for these TIM-catalyzed reactions. We conclude that these clamping side chains minimize the Gibbs free energy for substrate deprotonation, and that the effects on reaction driving force are largely expressed at the transition state for proton transfer. Our combined analysis of previous experimental and current computational results allows us to provide an overview of the breakdown of ground-state and transition state effects in enzyme catalysis in unprecedented detail, providing a molecular description of the operation of a hydrophobic clamp in triosephosphate isomerase.
机译:磷酸三糖异构酶(TIM)是磷酸二羟基丙酮酯(DHAP)可逆异构化为D-甘油醛磷酸酯(GAP)的一种有效催化剂,通过E165的一般碱催化作用。从历史上看,该酶一直是用于理解生物催化基础的极其重要的模型系统。 TIM通过强烈要求的构象变化激活,这有助于将两个关键疏水残基(1170和L230)的侧链置于E165的羧酸酯侧链上。这对于建立用于催化碱的疏水袋和维持正确的活性位点结构都是至关重要的。将这些残基截短为丙氨酸会导致TIM的催化活性显着下降,但实验未能全面描述这种钳位在促进底物去质子化方面的作用。我们在这里对野生型TIM及其1170A,L230A和1170A / L230A突变体进行的TIM催化的DHAP和GAP的去质子化的价键键合进行了详细的计算,与实验获得了定量的一致。对于这些TIM催化的反应,我们的计算提供了激活势垒和Gibbs自由能之间的线性自由能关系,斜率为0.8。我们得出的结论是,这些夹紧侧链使底物去质子化的吉布斯自由能最小化,并且对反应驱动力的影响主要在质子转移的过渡态表达。我们对以前的实验结果和当前计算结果的综合分析使我们能够以前所未有的详细信息概述酶催化中基态和过渡态效应的分解,从而为疏水性钳制磷酸三糖异构酶提供了分子描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号